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Motivation

ẋ = f (x), x ∈ Rn, f (0) = 0, 0 hyperbolically stable with basin B ⊂ Rn. (1)

ψ : B → C is a Koopman eigenfunction if ∃λ ∈ C s.t.

ψ(x(t)) = eλtψ(x0), or ψ̇ = λψ if ψ ∈ C1. (2)

Sufficiently many “independent” eigenfunctions determine an invertible change of
coordinates through which (1) becomes a linear system, a drastic simplification.
How to find eigenfunctions? If µ ∈ C and g : B → C is such that the limit2

g∗µ(x0) = lim
T→∞

1
T

∫ T

0
g(x(t))e−µt dt (3)

exists and is not identically zero, then g∗µ is an eigenfunction with λ = µ in (2).
Questions: Which one? Can there be more than one possible limit (modulo scalar
multiplication)? Can the limit depend sensitively on g? Other numerical issues?
If we knew that eigenfunctions were unique, we could resolve these questions. We
will discuss uniqueness and more, including new convergence results for (3).

2Laplace average: see §3 of Mauroy, Mezić, Moehlis “Isostables...” 2013. See also Mezić “Analysis...” 2012.



Principal eigenfunctions

C1 eigenfunctions determining a linearizing diffeomorphism must be principal:

dψi (0) 6= 0.

(Fact: if ψi is principal and ψ̇i = λψi , dψi (0) is left eigenvector of D0f w/ e.val λ.)

Thus, we will concentrate on existence & uniqueness of C k principal eigenfunctions.

In particular we will see that, under some conditions, principal eigenfunctions are
uniquely determined by their derivatives at 0.

(Later we will classify all C∞ eigenfunctions under generic conditions, not just the
principal ones.)



Counterexamples =⇒ some conditions are needed

Ex. 1. Let k ≥ 2 be an integer, (x , y) ∈ R2,

ẋ = −x , ẏ = −ky .

Both
ψ1(x , y) = y and ψ2(x , y) = y + x k

are analytic principal eigenfunctions s.t. dψ1(0) = dψ2(0),

ψ̇i = λψi with λ = −k.

=⇒ nonresonance assumptions needed (explained later).
Ex. 2. Let a > 1 not be an integer, (x , y) ∈ R2,

ẋ = −x , ẏ = −ay .

Both
ψ1(x , y) = y and ψ2(x , y) = y + |x |a

are Cbac principal eigenfunctions (bac is the integer part of a) s.t. dψ1(0) = dψ2(0),

ψ̇i = λψi with λ = −a.

=⇒ resonance not an issue here, but spectral spread assumptions needed (later).



Towards Ck existence and uniqueness, step 1: reduction to discrete-time

Henceforth assume vector field f ∈ C k is complete with C k flow (t, x) 7→ Φt(x).

Can define eigenfunctions for a diffeomorphism F : B → B: ψ(F (x)) = eλψ(x).

If eigenfunctions for F = Φ1 are unique, then they are unique for f .

If a λ-eigenfunction ψ̃ for F = Φ1 exists, Sternberg’s trick3 =⇒

ψ =
∫ 1

0
e−λt ψ̃ ◦ Φt dt

is a λ-eigenfunction for f and dψ(0) = dψ̃(0).

=⇒ suffices to consider discrete time, i.e. prove existence & uniqueness for
principal eigenfunctions of a diffeomorphism F : Rn → Rn, F (0) = 0, 0 hyperbolically
stable with basin B.
Existence & uniqueness for k <∞ plus bootstrapping yields existence & uniqueness
for k =∞, hence assume k <∞ for now.

3cf. Lemma 4 of Sternberg, “Local contractions and a theorem of Poincaré” (1957).



Step 2: nonresonance and solving polynomial equations

If µ ∈ C, k ∈ N≥1 ∪ {+∞} eigenvalues(D0F ) = eλ1 , . . . , eλn repeated with
multiplicity, (eµ,D0F ) is k-nonresonant if

eµ 6= em1λ1 · · · emnλn

whenever m1, . . . ,mn ∈ N≥0 satisfy 2 ≤
∑

i mi < k + 1.
Key fact:4 If F ∈ C k and ∃w ∈ Cn s.t. wD0F = eλw , k-nonresonance =⇒
invertibility of certain linear operators on polynomials =⇒ ∃! polynomial
P : Rn → C such that P(0) = 0, dP(0) = w , and

P ◦ F = eλP + o(‖x‖k ), and P is R-valued if eλ ∈ R and w ∈ Rn.

In other words, k-nonresonance =⇒ can Taylor expand and solve eigenfunction
equation “order by order” to produce polynomial “eigenfunction up to order k” P.
Remains only to find o(‖x‖k ) remainder ϕ : Rn → C such that ψ = P + ϕ is an
eigenfunction exactly.

4Lemma 4 of Kvalheim and Revzen (2021).



Step 3: spectral spread and contraction mapping to eliminate remainder
Spectral spread ν(eµ,D0F ) := min

{
r ∈ R : |eµ| ≥

(
maxeλ∈evals(D0F ) |eλ|

)r}.

Figure: Illustration of ν(eµ,D0F ) < k.

Key fact: if ν(eλ,D0F ) < k, ∃ adapted norm ‖ · ‖ and ε > 0 s.t. with N := Bε(0)
S : {ϕ|N ∈ C k (N,C) : ϕ|N ∈ o(‖x‖k )} 	

S(ϕ|N) := −P|N + e−λ(P|N + ϕ|N) ◦ F
is a contraction mapping =⇒ ∃! ϕ|N s.t. S(ϕ|N) = ϕ|N = limm→∞ Sm(ϕ̃|N), i.e.

(P|N + ϕ|N)︸ ︷︷ ︸
ψ|N

◦F = eλ (P|N + ϕ|N)︸ ︷︷ ︸
ψ|N

and ψ|N = lim
m→∞

e−λmP ◦ F |N .



Step 4: globalization =⇒ discrete-time existence and uniqueness result

Can globalize ψ|N : N → C to ψ : B → C as follows: set ψ(x) := e−mλψ|N ◦ F m(x)
where m is large enough that F m(x) ∈ N; can show well-defined independent of m.5

Theorem: let k ≥ 1, F ∈ C k (Rn,Rn), F (0) = 0, 0 hyperbolically stable with basin
B, (eλ,D0F ) k-nonresonant, ν(eλ,D0F ) < k, and wD0F = eλw . Then there exists
a unique C k principal eigenfunction ψ satisfying ψ ◦ F = eλψ, and moreover

ψ = lim
m→∞

e−λmP ◦ F C k -uniformly on compacts if P ◦ F = eλP + o(‖x‖k ). (4)

Observation: (4) =⇒ Theorem hypotheses =⇒ convergence of Laplace average

ψ = lim
M→∞

1
M

M∑
m=1

e−λmP ◦ F .

5Similar techniques are used in Lan and Mezić (2013); Kvalheim, Eldering, and Revzen (2018).



Continuous-time existence and uniqueness with weaker nonresonance
If evals(D0f ) = λ1, . . . , λn with multiplicity and F = Φ1, taking logarithm of
eµ 6= em1λ1 · · · emnλn implies that k-nonresonance of (eµ,D0F ) is equivalent to

µ 6= m1λ1 + · · ·mnλn + i2π` (5)

for any ` ∈ Z and any m1, . . . ,mn ∈ N≥0 satisfying 2 ≤
∑

i mi < k + 1.
By replacing F = Φ1 with F = Φτ for arbitrary τ > 0, (5) becomes

µ 6= m1λ1 + · · ·mnλn + i 2π
τ
` (6)

which can be violated for all τ if and only if it is violated for ` = 0.
=⇒ Theorem:6 let k ≥ 1, vector field f ∈ C k (Rn,Rn), f (0) = 0, 0 hyperbolically
stable with basin B, ν(eλ, eD0f ) < k, λ not equal to any integer linear combination
of eigenvalues of D0f with 2 ≤ (coefficient sum) < k + 1, and wD0f = λw . Then
there exists a unique C k principal eigenfunction ψ satisfying ψ ◦ Φt = eλtΦt for all
t ∈ R, and

ψ = lim
m→∞

e−λtP ◦Φt C k -uniformly on compacts if P ◦Φ1 = eλP +o(‖x‖k ). (7)

Observation: (4) =⇒ Theorem hypotheses =⇒ convergence of Laplace average

ψ = lim
T→∞

1
T

∫ T

0
e−λtP ◦ Φt .

6see Remark 3 of Kvalheim and Revzen (2021) or Proposition 11 of Kvalheim, Hong, and Revzen (2021).



Classification of C∞ Koopman eigenfunctions

Key tool:7 assuming ∞-nonresonance, if ϕ ∈ C∞(B,C) satisfies ϕ ◦ Φ1 = eλϕ and
Dj

0ϕ = 0 for all j ∈ N≥0, then ϕ ≡ 0. In particular, if ϕ = ψ1 − ψ2, ψ1 = ψ2.

Key tool & preceding theorem can be used to prove the following.

Classification theorem: let vector field f ∈ C∞(Rn,Rn), f (0) = 0, 0 hyperbolically
stable with basin B, no eigenvalue of D0f equal to a positive integer linear
combination of the others w/ coefficient sum ≥ 2, D0f diagonalizable over C. Then

I any Koopman λ-eigenfunction is a finite linear combination of products of n principal
eigenfunctions and their complex conjugates.

I In particular, λ is a linear combination of eigenvalues of D0f .

This classification, and all other eigenfunction uniqueness results, were previously
known only for analytic dynamics & eigenfunctions (cf. Mauroy, Mezić, Moehlis
(2012)).

7Proposition 1 from Kvalheim and Revzen (2021).



Extension to periodic orbits

Consider ẋ = f (x) with f ∈ C∞ having a hyperbolically stable τ -periodic limit cycle
with image Γ.

Apply discrete-time versions of preceding theorems to a Poincaré map with section
given by an isochron =⇒ existence and uniqueness theorems for C k principal
eigenfunctions (those with derivatives nonvanishing on Γ).

Corresponding classification theorem has a twist involving the unique C∞
asymptotic phase eigenfunction ψθ satisfying8 ψ̇θ = i 2π

τ
ψθ.

Classification theorem: let f ∈ C∞ and assume no Floquet multiplier is a finite
product of positive integer powers of the others with power sum ≥ 2. Then

I any Koopman λ-eigenfunction is a finite linear combination of products of (n − 1)
principal eigenfunctions and ψθ and their complex conjugates.

I In particular, eλ is a product of powers of Floquet multipliers.

8See Mauroy and Mezić “On the use of Fourier...” (2012), Kvalheim and Revzen (2021).



Remarks on other results from Kvalheim and Revzen (2021)
Results are given for both continuous-time and discrete-time.

Main theorem is actually existence/uniqueness of general linearizing
semiconjugacies (aka factors): maps ψ : B → Cm s.t. ψ ◦ Φt = eAtψ with
A ∈ Cm×m.

Application in paper: improvements of the Sternberg linearization and Floquet
normal form theorems, with uniqueness statements, without assuming diagonalizable
linearized dynamics.

Paper considers ψ ∈ C k,α, i.e. ψ ∈ C k such that Dkψ is locally Hölder continuous
with exponent α. With this, results become fairly sharp (as examples in paper
show).

Stronger uniqueness-only statements in paper only require C1 (not C k) dynamics,
but existence no longer guaranteed for merely C1 dynamics.

Paper discusses in detail implications for isostables and isostable coordinates from
literature—these exist and are unique under much weaker conditions than needed to
guarantee that a full C k linearization exists.

Also, see Schlosser and Korda “Sparsity structures for Koopman and
Perron-Frobenius operators”, SIADS (2022) for an interesting application of the
uniqueness results.



Thank you for your time and attention, and thank you to the organizers Milan
Korda, Alexandre Mauroy, Igor Mezić, and Yoshihiko Susuki for their kind invitation.


