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This talk is about the “flux” of a Brownian motion with drift on a manifold

What this talk is about:
Nondegenerate diffusion processes2 on smooth manifolds M (= T2 above)

I with smooth infinitesimal generator =⇒ ∃ metric with respect to which the
infinitesimal generator Lε = vε + ε∆, and the probability density ρt satisfies

∂tρt = −∇ · (ρtvε) + ε∆ρ = −∇ · (ρvε − ε∇ρ)︸ ︷︷ ︸
J(t)=probability current

.

And their flux: given closed hypersurface N ⊂ M (black circle above),

Fε,N,t :=
∫

N
〈J(t), n̂N〉dy .

2McKean (1969), Ikeda & Watanabe (1989), Hsu (2002).



More specifically, the steady-state flux

Nondegenerate diffusion processes in steady state:
Steady-state probability density ρε and current Jε:

0 = −∇ · (ρεvε) + ε∆ρε = −∇ · (ρεvε − ε∇ρε)︸ ︷︷ ︸
Jε

.

Steady-state flux: given closed hypersurface N ⊂ M (black circle above),

Fε,N :=
∫

N
〈Jε, n̂N〉dy .

}
← “macroscopic” definition

Enter topology: since ∇ · Jε = 0, Fε,N depends only on the homology class [N]
(divergence theorem), and if [α] ∈ H1

dR(M) is Poincaré dual to [N] (α = dθ1 above),

Fε([α]) := Fε,N
a.s= lim

t→∞

1
t

∫
X[0,t]

α.

}
← “microscopic” definition (Manabe 1982)



Some non-mathematical motivations3

This class of models has been used to describe:

Phase-locked loops, Josephson junctions, rotating dipoles in external fields,
superionic conductors, charge density waves, synchronization phenomena, diffusion
on crystal surfaces, particle separation by electrophoresis, biophysical processes such
as intracellular transport,...

cf. Risken (1989), Reimann et al. (2001).

3Image: www.news-medical.net/news/20190715/New-insights-into-molecular-motors-could-help-treat-
neurological-disorders.aspx



Steady-state flux: generalizing beyond hypersurfaces

Nondegenerate diffusion processes in steady state:
Steady-state flux: given closed hypersurface N ⊂ M (black circle above),

Fε,N :=
∫

N
〈Jε, n̂N〉dy .

}
← “macroscopic” definition

Enter topology: since ∇ · Jε = 0, Fε,N depends only on the homology class [N]
(divergence theorem), and if [α] ∈ H1

dR(M) is Poincaré dual to [N] (α = dθ1 above),

Fε([α]) := Fε,N
a.s= lim

t→∞

1
t

∫
X[0,t]

α.

}
← “microscopic” definition

More generally: steady-state flux is a linear Fε : H1
dR(M)→ R (Schwartzman 1957),

Fε([α]) :=
∫

M
α(Jε)dx a.s.= lim

t→∞

1
t

∫
X[0,t]

α.



Steady-state flux in general: a linear functional on H1
dR(M)

Enter topology: since ∇ · Jε = 0, Fε,N depends only on the homology class [N]
(divergence theorem), and if [α] ∈ H1

dR(M) is Poincaré dual to [N] (α = dθ1 above),

Fε([α]) := Fε,N
a.s= lim

t→∞

1
t

∫
X[0,t]

α.

}
← “microscopic” definition

More generally: steady-state flux is a linear map Fε : H1
dR(M)→ R,

Fε([α]) :=
∫

M
α(Jε)dx a.s.= lim

t→∞

1
t

∫
X[0,t]

α.

When [α] is Poincaré dual to (cooriented) closed hypersurface N ⊂ M,

Fε([α]) = Fε,N .

Hence Fε([α]) indeed generalizes Fε,N .



Control Q: how can we create positive flux through a desired [α] ∈ H1
dR(M)?

More generally: steady-state flux is a linear map Fε : H1
dR(M)→ R,

Fε([α]) :=
∫

M
α(Jε)dx a.s.= lim

t→∞

1
t

∫
X[0,t]

α.

When [α] is Poincaré dual to (cooriented) closed hypersurface N ⊂ M,

Fε([α]) = Fε,N ,

hence Fε([α]) indeed generalizes Fε,N .
Control question: how can we create a positive flux through [α] ∈ H1

dR(M)?



Control Q answer: set vε proportional to α]

When [α] is Poincaré dual to (cooriented) closed hypersurface N ⊂ M,

Fε([α]) = Fε,N ,

hence Fε([α]) indeed generalizes Fε,N .
Control question: how can we create a positive flux through [α] ∈ H1

dR(M)?
Answer: assume vε is a “control force” we get to choose. Choose vε = cα], c > 0.

Proposition (YMB & MDK 2021): Assume vε = α]. Then for the diffusion on M with
generator Lε = α] + ε∆:

Fε([α]) =
∫

M

‖Jε‖2

ρε
dx ≥ 0

with equality ⇐⇒ α is exact (i.e., α] = −∇U for some U ∈ C∞(M)).



Ways to think about local gradients α] (closed one-forms α)
“Unwrap space” to obtain an honest gradient

Or instead: do not unwrap, view α] as gradient of “impossible landscape”

Penrose tribar Escher’s “Waterfall”



Control Q answer: set vε proportional to α]

When [α] is Poincaré dual to (cooriented) closed hypersurface N ⊂ M,

Fε([α]) = Fε,N ,

hence Fε([α]) indeed generalizes Fε,N .
Control question: how can we create a positive flux through [α] ∈ H1

dR(M)?
Answer: assume vε is a “control force” we get to choose. Choose vε = cα], c > 0.

Proposition (YMB & MDK 2021): Assume vε = α]. Then for the diffusion on M with
generator Lε = α] + ε∆:

Fε([α]) =
∫

M

‖Jε‖2

ρε
dx ≥ 0

with equality ⇐⇒ α is exact (i.e., α] = −∇U for some U ∈ C∞(M)).



Proof of proposition
Proposition (YMB & MDK 2021): Assume vε = α]. Then for the diffusion on M with
generator Lε = α] + ε∆:

Fε([α]) =
∫

M

‖Jε‖2

ρε
dx ≥ 0

with equality ⇐⇒ α is exact (i.e., α] = −∇U for some U ∈ C∞(M)).

Proof: Recall Jε := ρεα
] − ε∇ρε, expand ‖Jε‖2 = 〈Jε, Jε〉:

‖Jε‖2

ρε
= 〈ρεα

] −∇ρε
ρε

, Jε〉 = 〈α] −∇ ln ρε, Jε〉 = α(Jε)−∇ · [(ln ρε)Jε].

Since
∫

M ∇ · [(ln ρε)Jε]dx = 0 (divergence theorem),∫
M

‖Jε‖2

ρε
=
∫

M
α(Jε)dx =: Fε([α]),

as desired. To finish, first note Jε ≡ 0 =⇒ α] = ∇(ε ln ρε). Conversely, α] = −∇U
=⇒ e− 1

ε
U(−∇U)− ε∇(e− 1

ε
U) = e− 1

ε
U(−∇U +∇U) = 0. =⇒ ρε ∝ e− 1

ε
U . �

Intuition: next slide.



When vε = α], flux > 0 ⇐⇒ tilt + noise (Below α = −dU + cdx)

Figure: No noise, no tilt: no flux

Figure: No tilt: no flux

Figure: No noise: no flux

Figure: Tilt + noise: flux harvested from the
noise



Other interpretation: asymptotic winding rate > 0 ⇐⇒ tilt + noise

Figure: No noise, no tilt: no asymptotic winding

Figure: No tilt: no asymptotic winding

Figure: No noise: no asymptotic winding

Figure: Tilt + noise: asymptotic winding
harvested from the noise
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We know how to create a positive flux; how to control the magnitude?

How might we quantify the steady-state flux more precisely?

Why care?

Imagine technology enabled by circuits conducting Brownian particles, rather than
electrons.

Basic circuit component property: resistance (inverse of conductance, mobility).

How might we determine the resistance of a Brownian conductor?



In the 1D case: ∃ closed-form solution

When M = S1, α] = −∂x U + F = −∂x (U(x)− Fx)︸ ︷︷ ︸
B(x)

Fε(
[dx ]
2π ) = ε(1− e− F

ε )∫ 2π
0

∫ 2π+x
x e 1

ε
(B(y)−B(x)) dy dx

.

But what about when dimension(M) > 1? Can we “solve for” flux?
I Not usually. 1D case, solving Fokker-Planck equation amounts to solving a two-point

ODE BVP. ≥2D case: second-order linear elliptic PDE, closed-form solutions rare.
(Exception: α] = −∇U, but then flux = 0.)

Next best thing: try to approximate flux
Our approach (MDK & YMB): study the small-noise asymptotics of flux.



Morse-Smale functions

Assumption (U is generic)

U ∈ C∞(M) has a unique global minimizer, U takes distinct values on distinct index-1
critical points, and U is Morse-Smale.

Height function (x , y , z) 7→ z on this
torus is not Morse-Smale

Height function (x , y , z) 7→ z on this
torus is Morse-Smale

Images: wikipedia article “Morse-Smale system”



Main result for tilted potential flux
Assumption (U is generic)

U ∈ C∞(M) has a unique global minimizer, U takes distinct values on distinct index-1
critical points, and U is Morse-Smale.

If α is C1-close to −dU, there is a unique zero v∗ of α close to the global min. of U.
Assume α is closed but not exact; assume vε → α] uniformly as ε→ 0.

Theorem (YB and MDK)
If α is sufficiently C1-close to −dU, the steady-state [α]-flux of the diffusion process with
generator vε + ε∆ satisfies

lim
ε→0

(−ε lnFε([α])) = h∗
(
hence Fε([α]) = e−

1
ε

(h∗+o(1)); Fε([α]) � e−
1
ε

h∗
)
.

Ω := loops γ : [0, 1]→ M based at v∗.
height(γ) := supt∈[0,1]

∫
γ|[0,t]

(−α)

h∗ := inf{height(γ) : γ ∈ Ω and
∫
γ

α > 0}



Tilted potential flux � exp(−1
ε (critical PH0 bar length))

lim
ε→0

(−ε lnFε([α])) = h∗

“Unwrap” M: consider any cover π : M̃ → M such that π∗α = −df is exact.
Consider the 0th persistent homology (# components) of the filtration {f < h}h∈R.
Choose a lift ṽ∗ ∈ π−1(v∗). In the zeroth persistent homology “barcode”,4

h∗ = length(bar corresponding to ṽ∗).

4Or “merge tree”. PH surveys: Ghrist (2008), Edelsbrunner and Harer (2008, 2010), Weinberger (2011).
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In the 1D case: ∃ closed-form solution & resistance is always positive
When M = S1, α] = −∂x U + F = −∂x (U(x)− Fx)︸ ︷︷ ︸

B(x)

Fε(
[dx ]
2π ) = ε(1− e− F

ε )∫ 2π
0

∫ 2π+x
x e 1

ε
(B(y)−B(x)) dy dx

.

Long known to physicists. Can compute directly to find:
d

dF Fε(
[dx ]
2π ) > 0.

=⇒ positive “resistance”/“conductance” (greater force → greater flux/current).

At least, in the one-dimensional case...



What about higher-dimensional systems? Negative resistance discovered

Cecchi and Magnasco (1996) considered the following “herringbone” potential on
R2; demonstrated negative resistance when tilted in the downward y -direction.

C & M’s analysis: heuristic and numerical considerations.
Question: does our PH0 flux large deviations result quantify flux well enough to
rigorously analyze/synthesize negative resistance?



Yes: negative resistance corollary to PH0 result, example

lim
ε→0

(−ε lnFε([α])) = h∗

Let U ∈ C∞(M) satisfy the genericity assumption. Let α = −dU + cβ, where β is a
closed but not exact one-form and c > 0.

Corollary (YB and MDK)
Assume that c 7→ h∗(c) is strictly increasing on some nonempty interval (0, c0). Then for
all c1 < c2 belonging to (0, c0) and all sufficiently small ε > 0,

Fε,c2([β]) < Fε,c1([β]);

there is negative resistance.

Example: when small force (“tilt”) F = ce1 is added, h∗(c) = height difference of ends
of pink segment; d

dc h∗(c) > 0; =⇒ negative resistance in the x -direction.
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Proof idea: enter Freidlin-Wentzell5

Freidlin-Wentzell large deviations theory suggests we can discretize the problem and
compute the small-noise flux asymptotics from an associated Markov chain (MC) on
the set V ⊂ M of attracting zeros of α].

Figure: by Yuliy Baryshnikov.

However: to detect flux, our MC needs to detect wrapping of trajectories around the
manifold =⇒ need a finite set of vertices V , but an infinite set of directed
edges (we take one edge for each path homotopy class)...

5M I Freidlin and A D Wentzell, Random perturbations of dynamical systems, 3rd ed., 2012.



Path-homotopical refinement of Freidlin-Wentzell theory

Given T > 0, the FW action functional ST : C([0,T ],M)→ [0,+∞] is defined by

ST (ϕ) := 1
4

∫ T

0
‖ϕ̇(t)− v(ϕ(t))‖2 dt

if ϕ is absolutely continuous and ST (ϕ) := +∞ otherwise. Here v = α].

Refined quasipotential (YB, MDK): given path homotopy class e ∈
f. groupoid︷ ︸︸ ︷
Π(M) ,

Qv(e) := inf{ST (ϕ) | T > 0, [ϕ] = e}.

We already understand the case dim(M) = 1, so henceforth dim(M) ≥ 2 (otherwise,
special modification of Qv needed in the 1D case).



An exact graph-theoretic expression for flux
After technicalities to construct discrete-time, continuous-space Markov chain, derive

Next, use Markov chain tree theorem to derive (here π̄(E) =
∏

e∈E P̄κ1(e)):

Tree formula, RSTs, CRSTs: Pitman & Tang (2018).



Basic lemma

Lemma (cf. Freidlin & Wentzell (2012), p. 100). Let v be a continuous vector field
on a Riemannian manifold M. Let ϕ ∈ C([T1,T2],M) satisfy S(ϕ) <∞. Then

S(ϕ) = 1
4

∫ T2

T1

‖ϕ̇+ v(ϕ)‖2dt −
∫ T2

T1

〈ϕ̇, v(ϕ)〉dt. (1)

Proof. Let w be an arbitrary continuous vector field on M. By expanding both sides
below,

‖ϕ̇− v(ϕ)‖2 = ‖ϕ̇− w(ϕ)‖2 + ‖v(ϕ)‖2 − ‖w(ϕ)‖2 + 2〈ϕ̇,w(ϕ)− v(ϕ)〉.

Thus,

S(ϕ) = 1
4

∫ T2

T1

‖ϕ̇− v(ϕ)‖2dt

= 1
4

∫ T2

T1

‖ϕ̇− w(ϕ)‖2dt + 1
4

∫ T2

T1

‖v(ϕ)‖2 − ‖w(ϕ)‖2dt + 1
2

∫ T2

T1

〈ϕ̇,w(ϕ)− v(ϕ)〉dt.

Taking w = −v yields (1).



Basic lemma gets parlayed into technical workhorse #1:
Proposition (YB and MDK)
Under the hypotheses of the main theorem (with v = α]),

Qv(e) = 0 ⇐⇒ e contains a piecewise v-integral curve

and
Qv(e) =

∫
e
(−α) ⇐⇒ e contains a piecewise (−v)-integral curve.

Figure: Points on red diamond index the piecewise integral curves p  v in a Morse-Smale flow
on T2. From “An Invitation to Morse theory” by Nicolaescu, 2nd ed.



Technical workhorse #1 + exact flux expression  graph-theoretic LD

M ⊃ g =
⋃

vicinities of α] stable zeros; τ1 = transit. time; νε = MC invariant measure.

Previous proposition enables estimates on the transition time and probabilities between
vicinities of attracting zeros of α]. Details+above =⇒

Theorem. The following minima exist; assume they satisfy the inequality min
E∈CRST(ΓΠ)
α(cycle(E))>0

∑
e∈E

Qv(e)

 <

 min
E∈CRST(ΓΠ)
α(cycle(E))<0

∑
e∈E

Qv(e)

 . (2)

Then Fε([α]) > 0 for all sufficiently small ε > 0, and

lim
ε→0

(−ε lnFε([α])) =

 min
E∈CRST(ΓΠ)
α(cycle(E))>0

∑
e∈E

Qv(e)

−( min
E∈RST(ΓΠ)

∑
e∈E

Qv(e)

)
. (3)

Downside: evaluating Qv( · ) is a generally-difficult calculus of variations problem.



Toward getting around the downside: technical workhorse # 2

Proposition (YMB and MDK): continuity of Q at Morse-Smale vector fields.
Let v0 ∈ X1(M) be a Morse-Smale vector field without nonstationary periodic orbits on
closed Riemannian manifold M. Then for any e0 ∈ Π(M), the map

(v, e) ∈ X1(M)× Π(M) 7→ Qv(e) ∈ [0,+∞) is continuous at (v0, e0).

Here π : M̃ → M is the universal cover and the deck group Aut(π) acts diagonally on
M̃ × M̃, equipping Π(M) ≈ (M̃ × M̃)/Aut(π) with the topology and structure of a
smooth manifold of dimension 2 dim(M).

Remark. I do not know if Q is continuous at (v0, e0) for general v0 ∈ X1(M).
(open question?)



Technical workhorse # 2 enables the second step in the following argument
Vague sketch of rest of the proof of the PH0 “longest bar” flux small-noise LD theorem:

1 If v = −∇U, the Qv-optimal rooted spanning trees all coincide as undirected graphs
as the root ranges over all vertices. Moreover,

I the RST minima with respect to Qv in the path-homotopical graph coincide with
minima with respect to saddle-minus-minimum cost in the Morse 1-skeleton, and

I the Qv-cost of the optimal tree rooted at v minus that of the optimal tree rooted at w
is U(v)− U(w).



Technical workhorse # 2 enables the second step in the following argument

Vague sketch of rest of the proof of the PH0 “longest bar” flux small-noise LD theorem:

1 If v = −∇U, the Qv-optimal rooted spanning trees all coincide as undirected graphs
as the root ranges over all vertices. Moreover,

I the RST minima with respect to Qv in the path-homotopical graph coincide with
minima with respect to saddle-minus-minimum cost in the Morse 1-skeleton, and

I the Qv-cost of the optimal tree rooted at v minus that of the optimal tree rooted at w
is U(v)− U(w).

2 Using the continuity of Q at Morse-Smale −∇U, other Q estimates, discreteness of
the space of rooted spanning trees:

I Can show that, if v = α] is sufficiently C1-close to generic U ∈ C∞(M), then the RST
Qv-minimizers have the same property but with U replaced by a potential for α defined
on a certain spanning tree in the Morse 1-skeleton.

I Similar analysis for the CRST minimizers.
3 This allows the graph-theoretic expressions involving quasipotentials to be simplified

to Morse-theoretic expressions, yielding the longest PH0 bar theorem.



Remark: the “small tilt” (C1-close to generic gradient) hypothesis is crucial

Not enough for α] to be Morse-Smale without periodic orbits.
When α is sufficiently C1-close to −dU for generic U ∈ C∞(M), trajectories
circulate around one “main highway” with high probability.
When tilt is large, trajectories can “fall off” main highway, take exponentially long
times to “climb back on”.

Explicit T2 counterexamples (YB, MDK) show our hypotheses are fairly sharp.
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Flux in tilted potential systems: negative resistance and persistence6

Control Q answer: set vε proportional to α]

When [α] is Poincaré dual to (cooriented) closed hypersurface N ⊂ M,

Fε([α]) = Fε,N ,

hence Fε([α]) indeed generalizes Fε,N .
Control question: how can we create a positive flux through [α] ∈ H1

dR(M)?
Answer: assume vε is a “control force” we get to choose. Choose vε = cα], c > 0.

Proposition (YMB & MDK 2021): Assume vε = α]. Then for the diffusion on M with
generator Lε = α] + ε∆:

Fε([α]) =
∫

M

‖Jε‖2

ρε
dx ≥ 0

with equality ⇐⇒ α is exact (i.e., α] = −∇U for some U ∈ C∞(M)).

Yes: negative resistance corollary to PH0 result, example

lim
ε→0

(−ε lnFε([α])) = h∗

Let U ∈ C∞(M) satisfy the genericity assumption. Let α = −dU + cβ, where β is a
closed but not exact one-form and c > 0.

Corollary (YB and MDK)
Assume that c 7→ h∗(c) is strictly increasing on some nonempty interval (0, c0). Then for
all c1 < c2 belonging to (0, c0) and all sufficiently small ε > 0,

Fε,c2([β]) < Fε,c1([β]);

there is negative resistance.

Example: when small force (“tilt”) F = ce1 is added, h∗(c) = height difference of ends
of pink segment; d

dc h∗(c) > 0; =⇒ negative resistance in the x -direction.

When vε = α], flux > 0 ⇐⇒ tilt + noise (Below α = −dU + cdx)

Figure: No noise, no tilt: no flux

Figure: No tilt: no flux

Figure: No noise: no flux

Figure: Tilt + noise: flux harvested from the
noise

Proof idea: enter Freidlin-Wentzell5

Freidlin-Wentzell large deviations theory suggests we can discretize the problem and
compute the small-noise flux asymptotics from an associated Markov chain (MC) on
the set V ⊂ M of attracting zeros of α].

Figure: by Yuliy Baryshnikov.

However: to detect flux, our MC needs to detect wrapping of trajectories around the
manifold =⇒ need a finite set of vertices V , but an infinite set of directed
edges (we take one edge for each path homotopy class)...

5M I Freidlin and A D Wentzell, Random perturbations of dynamical systems, 3rd ed., 2012.

Tilted potential flux � exp(−1
ε (critical PH0 bar length))

lim
ε→0

(−ε lnFε([α])) = h∗

“Unwrap” M: consider any cover π : M̃ → M such that π∗α = −df is exact.
Consider the 0th persistent homology (# components) of the filtration {f < h}h∈R.
Choose a lift ṽ∗ ∈ π−1(v∗). In the zeroth persistent homology “barcode”,4

h∗ = length(bar corresponding to ṽ∗).

4Or “merge tree”. PH surveys: Ghrist (2008), Edelsbrunner and Harer (2008, 2010), Weinberger (2011).

An exact graph-theoretic expression for flux
After technicalities to construct discrete-time, continuous-space Markov chain, derive

Next, use Markov chain tree theorem to derive (here π̄(E) =
∏

e∈E P̄κ1(e)):

Tree formula, RSTs, CRSTs: Pitman & Tang (2018).

THANK YOU

6Matthew Kvalheim (kvalheim@seas.upenn.edu) and Yuliy Baryshnikov. arXiv:2108.06431



“Large tilt” counterexamples
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