
When do Koopman embeddings exist?1

Matthew Kvalheim

(joint work with Philip Arathoon and Eduardo Sontag)

Department of Mathematics and Statistics
University of Maryland, Baltimore County

kvalheim@umbc.edu

1Funding from AFOSR award FA9550-24-1-0299 is gratefully acknowledged.



Motivation
Given: a (possibly unknown) nonlinear system

ẋ = f (x).

▶ Extended Dynamic Mode Decomposition:2 seeks y = h(x),
matrix A with linear dynamics

ẏ = Ay .

▶ To not lose information: want h one-to-one (1-1). Then

x(t) = h−1(y(t))
= h−1(eAth(x0)).

▶ Such 1-1 linearizing maps h have also been called Koopman
embeddings (?), faithful linear representations (Mezić
2021), 1-1 linear immersions (Liu-Ozay-Sontag 2023, 2025).

2Williams, Kevrekidis, and Rowley. J Nonlinear Science (2015)



Main question considered in this talk

Necessary and sufficient conditions for 1-1 linearizing h to exist
were obtained by Mezić (2021).

However, those conditions do not assume h is continuous (or
smoother), which can be nice for theory and applications.
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Main question:
when do continuous (or smoother) 1-1 linearizing h exist?
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Some positive results

Continuous 1-1 linearizing y = h(x) always exists:3

▶ near a hyperbolic equilibrium or limit cycle
(Hartman-Grobman, Floquet);

▶ on the basin of any exponentially stable equilibrium or limit
cycle (Lan-Mezić 2013, K-Revzen 2021);

▶ On the basin of ANY asymptotically stable equilibrium, not
necessarily exponentially stable / hyperbolic (K-Sontag 2025)!

3There are also C k versions of all of these results.



Global linearization for equilibria without hyperbolicity

Let x∗ be asymptotically stable with basin B for

ẋ = f (x).

Assume f is continuous w/ unique trajectories defined for all time.

Theorem (K-Sontag 2025). There is a homeomorphism
h : B → Rn such that y = h(x) satisfies

ẏ = Ay

and hence x(t) = h−1(eAth(x0)) for all t ∈ R.
And if f ∈ Ck≥1, n ̸= 5: h is a Ck diffeomorphism on B \ {x∗}.



Remarks
▶ Exponential stability / hyperbolicity of x∗ is not needed.
▶ Proof relies on solutions to Poincaré conjecture (Smale,

Perelman, Freedman). In fact:

Proposition (K-Sontag 2025). The Ck statement for n = 5 in last
theorem is true ⇐⇒ the smooth 4-D Poincaré conjecture is true.

Proposition (K 2025). In the last theorem, if the vector field fp
depends continuously on parameter p ∈ P, there is a continuous
family hp : B → Rn of linearizing homeomorphisms if either
(i) n > 5 and dim P = 1 or (ii) n < 4.

▶ Proof of latter relies on corollary of:

Theorem (K 2025). The space of proper C∞ Lyapunov-like
functions on Rn is path-connected and simply connected if n ̸= 4, 5
and weakly contractible if n < 4. (Same for Ck≥1 & GAS vf)
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Some negative results

Assume a connected state space to avoid trivialities. Then

ẋ = f (x)

does not have a continuous 1-1 linearizing y = h(x) if either:

▶ there is a non-global compact attractor (K-Arathoon 2024), or
▶ all forward trajectories are precompact, and there are ≥ 2 but

at most countably many omega-limit sets, e.g., multiple
isolated equilibria (Liu-Ozay-Sontag 2023, 2025).

On the other hand, on the subject of multiple isolated equilibria...
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Smooth 1-1 linearization despite multiple isolated equilibria

If we drop the assumption that forward trajectories are
precompact, then (another positive result):

Theorem (Arathoon-K 2023). For any n > 1 there is a smooth
vector field on Rn with any given finite number of isolated
equilibria such that there exists a smooth 1-1 linearizing y = h(x).

In fact, h is a smooth embedding, and can moreover be taken of
the form h(x) = (x , g(x))!4

This theorem gives a family of strong counterexamples to an
oft-repeated claim.

4Linearizing embeddings of this form were further studied by Claude, Fliess,
and Isidori (1983) and recently Belabbas, Chen, Harshana, and Ko (2022–).



Example

Figure: Smoothly embedding a nonlinear system on R2 with two isolated
equilibria as an invariant subset of a linear system on R3.
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Where is the boundary between the positive and negative
results?

We have now seen a variety of necessary conditions and sufficient
conditions on

ẋ = f (x)

for a continuous 1-1 linearizing y = h(x) to exist.
ww�

Fundamental question: what are necessary and sufficient
conditions on f for such an h to exist?

Recall: without continuity, necessary and sufficient conditions for
1-1 linearizing h to exist were obtained by Mezić (2021).



Preamble to answering the fundamental question

Assume a connected state space to avoid trivialities.

▶ We can answer the fundamental question for any
continuous f with unique trajectories defined for all time if
there is at least one compact attractor.

▶ Recall there does not exist such an h if there are ≥ 2 such
attractors, or even a single non-global compact attractor
(K-Arathoon 2024).w�

▶ Remains to consider case of a global compact attractor (can
also restrict to basin of local attractor to apply next result).



Torus preliminaries
The m-torus T = T m is Lie group isomorphic to (R/Z)m, vectors
w/ m real entries but w/ addition defined elementwise modulo 1.

A torus action on a space S is a map Θ: T × S → S satisfying
Θτ1+τ2(s) = Θτ1 ◦ Θτ2(s) for all s ∈ S and τ1, τ2 ∈ T .

A 1-parameter subgroup of Θ is a map Φ: R × S → S of the
form Φt(x) = Θωt(x) for some ω ∈ Rm.

Θ has finite orbit types if there are only finitely many subgroups
H ⊂ T such that, for some x ∈ S,

H = Fix(x) := {τ ∈ T : Θτ (x) = x}.



Finishing the answer to the fundamental question

Assume f is continuous with unique trajectories defined for all
time, so f generates a continuous flow Φ: R × X → X .5

Theorem (K-Arathoon 2024). Assume there is a global compact
attractor A (or restrict to the basin of a local attractor). Then a
continuous 1-1 linearizing y = h(x) exists ⇐⇒
▶ Φ|R×A is a 1-parameter subgroup of a continuous torus action

with finite orbit types, and
▶ A has continuous asymptotic phase P : X → A.

Moreover, such h is automatically a proper topological embedding.

5t 7→ Φt(x0) is the unique solution of ẋ = f (x) satisfying x(0) = x0.



Asymptotic phase

Asymptotic phase means: for all x ∈ X , t ∈ R,

P(Φt(x)) = Φt(P(x)).

=⇒ if P continuous, then dist(Φt(x), Φt(P(x))) → 0 as t → ∞;
x is “asymptotically in phase with” P(x).



Example: limit cycles

Previous theorem implies that dynamics on basin of limit cycle
attractor admit a continuous 1-1 linearizing y = h(x) if and only if
there is continuous asymptotic phase (w/ level sets “isochrons”).

Example. Using polar coordinates (r , θ) on R2, the system

ṙ = −(r − 1)3, θ̇ = r

generates a smooth flow Φ on R2 \ {0} with globally asymptotically
stable limit cycle A = {r = 1}. Closed-form expression for Φ =⇒

dist(Φt(x), Φt(y)) ̸→ 0 as t → ∞

for any x ̸∈ A, y ∈ A, so A does not have continuous asymptotic
phase, so a continuous 1-1 linearizing y = −h(x) does not exist.



What about smooth linearizations?

▶ Natural question: when does there exist a smooth 1-1
linearizing y = h(x) with smooth inverse x = h−1(y)
(y ∈ image(h))?

▶ Such an h is called a smooth embedding.
▶ So far, less satisfying answer in this case. But in particular,

have the following necessary conditions:

Theorem (K-Arathoon 2024). Assume ẋ = f (x) has a global
compact attractor A ⊂ X and is linearizable by a smooth
embedding. Then:
▶ A is a smoothly embedded submanifold and normally

hyperbolic,
▶ A has smooth asymptotic phase, and
▶ Φ|R×A is a 1-parameter subgroup of a smooth torus action.



Answer to fundamental question for compact invariant sets

If state space X is compact, can view A = X as a (trivial) compact
attractor (with basin B = A = X ). For this special case, we have:

Theorem (K-Arathoon 2024). Assume f generates a smooth
(resp. continuous) flow Φ and X is compact. Then there is a
smooth (resp. continuous) linearizing embedding y = h(x) ⇐⇒
Φ is a 1-parameter subgroup of a smooth (resp. continuous w/
finite orbit types) torus action.

For X noncompact, can still apply this theorem by restricting to a
compact invariant set.



Surprising (?) examples with continuous 1-1 linearizations

Figure: For all of these flows, a continuous 1-1 linearizing y = h(x) exists
(easy to see using preceding theorem).



Some corollaries of preceding theorem
Corollary (K-Arathoon 2024). If X is a compact smooth manifold
and f has at most finitely many equilibria, and if there exists a
smooth linearizing embedding y = h(x), then

χ(X )︸ ︷︷ ︸
Euler characteristic

= #{equilibria} ≥ 0.

Corollary (K-Arathoon 2024). If X is an odd-dimensional compact
smooth manifold and f has at least one isolated equilibrium, then
there does not exist a smooth linearizing embedding y = h(x).

Proof sketch. Using previous theorem, Bochner’s linearization
theorem for fixed points of torus actions =⇒ the Hopf index of
any equilibrium is +1. Apply the Poincaré-Hopf theorem to deduce
the first corollary. Deduce the second corollary from the first using
χ(X ) = 0 if X is an odd-dimensional compact manifold.



A primer on the Euler characteristic6

Goes back to Francesco Maurolico (1537), Leonhard Euler (1758).

Notation: χ(Y ) := Euler characteristic of Y .

Examples: χ(•) = 1, χ(S1) = 0, χ(S2) = 2, χ(Σg) = 2 − 2g

Σg for g = 1, 2, 3 (not linearizable by smooth embedding for g > 1
if there is an isolated equilibrium).

6Figures from Quanta Magazine and Wikipedia.



Some open problems

1. Do asymptotically stable equilibria of arbitrary C∞ vector
fields on R5 have locally linearizing homeomorphisms that are
C1 diffeomorphisms on the complement of the equilibria?7

2. Necessary & sufficient conditions for linearizability by
[continuous or smooth] [embeddings or 1-1 maps] for arbitrary
continuous/smooth flows.

3. Necessary & sufficient conditions for linearizability by
[continuous or smooth] [embeddings or 1-1 maps] for
discrete-time systems.

4. Necessary & sufficient conditions for linearizability by
piecewise-continuous [embeddings or 1-1 maps].

7Equivalent to smooth 4-dimensional Poincaré conjecture (K-Sontag 2025)



References for (non)existence of 1-1 linearizing y = h(x)
▶ Linearization in the large of nonlinear systems and

Koopman operator spectrum. Lan & Mezić. Phys D (2013)
▶ Existence and uniqueness of global Koopman

eigenfunctions for stable fixed points and periodic orbits.
Kvalheim & Revzen. Phys D (2021)

▶ Linearizability of flows by embeddings. Kvalheim and
Ararthoon. arXiv:2305.18288 (2024)

▶ Koopman embedding and super-linearization
counterexamples with isolated equilibria. Arathoon and
Kvalheim. arXiv:2306.15126 (2023)

▶ Properties of immersions for systems with multiple limit
sets with implications to learning Koopman embeddings.
Liu, Ozay, & Sontag. Automatica (2025)

▶ Global linearization without hyperbolicity. Kvalheim and
Sontag. arXiv:2502.07708 (2025)

▶ Differential topology of the spaces of asymptotically
stable vector fields and Lyapunov functions. Kvalheim.
arXiv:2503.10828 (2025)



Thank you for your attention.

Please see mdkvalheim.github.io for slides and a
“user’s guide to slides”

containing precise references to all results from these slides that
are relevant to linearizing embeddings.
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