When do Koopman embeddings exist?¹

Matthew Kvalheim

(joint work with Philip Arathoon and Eduardo Sontag)

Department of Mathematics and Statistics University of Maryland, Baltimore County

kvalheim@umbc.edu

¹Funding from AFOSR award FA9550-24-1-0299 is gratefully acknowledged.

Motivation

Given: a (possibly unknown) nonlinear system

$$\dot{x}=f(x).$$

Extended Dynamic Mode Decomposition:² seeks y = h(x), matrix A with *linear* dynamics

$$\dot{y} = Ay$$

▶ To not lose information: want *h* one-to-one (1-1). Then

$$egin{aligned} x(t) &= h^{-1}(y(t)) \ &= h^{-1}(e^{At}h(x_0)) \end{aligned}$$

Such 1-1 linearizing maps h have also been called Koopman embeddings, faithful linear representations (Mezić 2021), 1-1 linear immersions (Liu-Ozay-Sontag 2023, 2025).

²Williams, Kevrekidis, and Rowley. J Nonlinear Science (2015)

To avoid practical issues: want h at least continuous.

Main issue: continuous 1-1 linearizing *h* do not exist in general.

Main question: when do they exist and when do they not?

When do Koopman embeddings exist?

Positive results (sufficient conditions)

Negative results (necessary conditions)

A counterexample for multiple isolated equilibria

When do Koopman embeddings exist?

Positive results (sufficient conditions)

Negative results (necessary conditions)

A counterexample for multiple isolated equilibria

Some positive results

Continuous 1-1 linearizing y = h(x) always exists:³

- near a hyperbolic equilibrium or limit cycle (Hartman-Grobman, Floquet);
- on the basin of any exponentially stable equilibrium or limit cycle (Lan-Mezić 2013, K-Revzen 2021);
- On the basin of ANY asymptotically stable equilibrium, not necessarily exponentially stable / hyperbolic (K-Sontag 2025)!

³There are also C^k versions of all of these results.

Global linearization for equilibria without hyperbolicity

Let x_* be asymptotically stable with basin B for

$$\dot{x}=f(x).$$

Assume f is continuous w/ unique trajectories defined for all time.

Theorem (K-Sontag 2025). There is a homeomorphism $h: B \to \mathbb{R}^n$ such that y = h(x) satisfies

$$\dot{y} = Ay$$

and hence $x(t) = h^{-1}(e^{At}h(x_0))$ for all $t \in \mathbb{R}$. And if $f \in C^{k \ge 1}$, $n \ne 5$: *h* is a C^k diffeomorphism on $B \setminus \{x_*\}$.

Remarks

- Exponential stability / hyperbolicity of x_* is not needed.
- Proof relies on solutions to Poincaré conjecture (Smale, Perelman, Freedman). In fact:

Proposition (K-Sontag 2025). The C^k statement for n = 5 in last theorem is true \iff the smooth 4-D Poincaré conjecture is true.

Proposition (K 2025). In the last theorem, if the vector field f_p depends continuously on parameter $p \in P$, there is a continuous family $h_p : B \to \mathbb{R}^n$ of linearizing homeomorphisms if either (i) n > 5 and dim P = 1 or (ii) n < 4.

Proof of latter relies on corollary of:

Theorem (K 2025). The space of proper C^{∞} Lyapunov-like functions on \mathbb{R}^n is path-connected and simply connected if $n \neq 4, 5$ and weakly contractible if n < 4. (Same for $C^{k \ge 1}$ & GAS vf)

When do Koopman embeddings exist?

Positive results (sufficient conditions)

Negative results (necessary conditions)

A counterexample for multiple isolated equilibria

Some negative results

Assume a connected state space to avoid trivialities. Then

$$\dot{x}=f(x)$$

does **not** have a continuous 1-1 linearizing y = h(x) if **either**:

- there is a non-global compact attractor (K-Arathoon 2023), or
- ► all forward trajectories are precompact, and there are ≥ 2 but at most countably many omega-limit sets, e.g., multiple isolated equilibria (Liu-Ozay-Sontag 2023, 2025).

On the other hand, on the subject of multiple isolated equilibria...

When do Koopman embeddings exist?

Positive results (sufficient conditions)

Negative results (necessary conditions)

A counterexample for multiple isolated equilibria

Smooth 1-1 linearization despite multiple isolated equilibria

If we drop the assumption that forward trajectories are precompact, then (another positive result):

Theorem (Arathoon-K 2023). For any n > 1 there is a smooth vector field on \mathbb{R}^n with any given finite number of isolated equilibria such that there exists a smooth 1-1 linearizing y = h(x).

In fact, *h* is a smooth embedding, and can moreover be taken of the form h(x) = (x, g(x))!

This theorem gives a family of strong counterexamples to an oft-repeated claim (cf. SIAM DS 2023 debate).

Example

Figure: Smoothly embedding a nonlinear system on \mathbb{R}^2 with two isolated equilibria as an invariant subset of a linear system on \mathbb{R}^3 .

When do Koopman embeddings exist?

Positive results (sufficient conditions)

Negative results (necessary conditions)

A counterexample for multiple isolated equilibria

Where is the boundary between the positive and negative results?

We have now seen a variety of necessary conditions and sufficient conditions on

 $\dot{x} = f(x)$

for a continuous 1-1 linearizing y = h(x) to exist.

Fundamental question: what are necessary **and** sufficient conditions on f for such an h to exist?

Preamble to answering the fundamental question

Assume a connected state space to avoid trivialities.

- We can answer the fundamental question for any continuous f with unique trajectories defined for all time if there is at least one compact attractor.
- Recall there does not exist such an h if there are ≥ 2 such attractors, or even a single non-global compact attractor (K-Arathoon 2025).

Remains to consider case of a global compact attractor (can also restrict to basin of local attractor to apply next result).

 $[\]downarrow$

Torus preliminaries

The *m*-torus $T = T^m$ is Lie group isomorphic to $(\mathbb{R}/\mathbb{Z})^m$, vectors w/ *m* real entries but w/ addition defined elementwise modulo 1.

A torus action on a space S is a map $\Theta: T \times S \to S$ satisfying $\Theta^{\tau_1+\tau_2}(s) = \Theta^{\tau_1} \circ \Theta^{\tau_2}(s)$ for all $s \in S$ and $\tau_1, \tau_2 \in T$.

A 1-parameter subgroup of Θ is a map $\Phi \colon \mathbb{R} \times S \to S$ of the form $\Phi^t(x) = \Theta^{\omega t}(x)$ for some $\omega \in \mathbb{R}^m$.

 Θ has **finite orbit types** if there are only finitely many subgroups $H \subset T$ such that, for some $x \in S$,

$$H = \mathsf{Fix}(x) \coloneqq \{\tau \in T \colon \Theta^{\tau}(x) = x\}.$$

Finishing the answer to the fundamental question

Assume *f* is continuous with unique trajectories defined for all time, so *f* generates a continuous flow $\Phi \colon \mathbb{R} \times X \to X$.⁴

Theorem (K-Arathoon 2023). Assume there is a global compact attractor A (or restrict to the basin of a local attractor). Then a continuous 1-1 linearizing y = h(x) exists \iff

- ▶ Φ|_{ℝ×A} is a 1-parameter subgroup of a continuous torus action with finite orbit types, and
- A has continuous **asymptotic phase** $P : X \rightarrow A$.

Moreover, such h is automatically a proper topological embedding.

 $^{{}^{4}}t \mapsto \Phi^{t}(x_{0})$ is the unique solution of $\dot{x} = f(x)$ satisfying $x(0) = x_{0}$.

Asymptotic phase

Asymptotic phase means: for all $x \in X$, $t \in \mathbb{R}$,

$$P(\Phi^t(x)) = \Phi^t(P(x)).$$

⇒ if *P* continuous, then dist($\Phi^t(x), \Phi^t(P(x))$) → 0 as $t \to \infty$; *x* is "asymptotically in phase with" P(x).

Example: limit cycles

Previous theorem implies that dynamics on basin of limit cycle attractor admit a continuous 1-1 linearizing y = h(x) if and only if there is continuous asymptotic phase (w/ level sets "isochrons").

Example. Using polar coordinates (r, θ) on \mathbb{R}^2 , the system

$$\dot{r} = -(r-1)^3, \qquad \dot{\theta} = r$$

generates a smooth flow Φ on $\mathbb{R}^2 \setminus \{0\}$ with globally asymptotically stable limit cycle $A = \{r = 1\}$. Closed-form expression for $\Phi \implies$

$${\sf dist}(\Phi^t(x),\Phi^t(y))
eq 0 \quad {\sf as} \quad t o\infty$$

for any $x \notin A$, $y \in A$, so A does not have continuous asymptotic phase, so a continuous 1-1 linearizing y = -h(x) does not exist.

What about smooth linearizations?

- ► Natural question: when does there exist a smooth 1-1 linearizing y = h(x) with smooth inverse x = h⁻¹(y) (y ∈ image(h))?
- Such an *h* is called a **smooth embedding**.
- So far, less satisfying answer in this case. But in particular, have the following necessary conditions:

Theorem (K-Arathoon 2023). Assume $\dot{x} = f(x)$ has a global compact attractor $A \subset X$ and is linearizable by a smooth embedding. Then:

- A is a smoothly embedded submanifold and normally hyperbolic,
- ► A has smooth asymptotic phase, and

• $\Phi|_{\mathbb{R}\times A}$ is a 1-parameter subgroup of a smooth torus action.

Answer to fundamental question for compact invariant sets

If state space X is compact, can view A = X as a (trivial) compact attractor (with basin B = A = X). For this special case, we have:

Theorem (K-Arathoon 2023). Assume f generates a smooth (resp. continuous) flow Φ and X is compact. Then there is a smooth (resp. continuous) linearizing embedding $y = h(x) \iff \Phi$ is a 1-parameter subgroup of a smooth (resp. continuous w/ finite orbit types) torus action.

For X noncompact, can still apply this theorem by restricting to a compact invariant set.

Surprising (?) examples with continuous 1-1 linearizations

Figure: For all of these flows, a continuous 1-1 linearizing y = h(x) exists (easy to see using preceding theorem).

Some corollaries of preceding theorem

F

Corollary (K-Arathoon 2023). If X is a compact smooth manifold and f has at most finitely many equilibria, and if there exists a smooth linearizing embedding y = h(x), then

$$\underbrace{\chi(X)}_{\text{uler characteristic}} = \#\{\text{equilibria}\} \ge 0.$$

Corollary (K-Arathoon 2023). If X is an odd-dimensional compact smooth manifold and f has at least one isolated equilibrium, then there does not exist a smooth linearizing embedding y = h(x).

Proof sketch. Using previous theorem, Bochner's linearization theorem for fixed points of torus actions \implies the Hopf index of any equilibrium is +1. Apply the Poincaré-Hopf theorem to deduce the first corollary. Deduce the second corollary from the first using $\chi(X) = 0$ if X is an odd-dimensional compact manifold.

A primer on the Euler characteristic⁵

Goes back to Francesco Maurolico (1537), Leonhard Euler (1758).

Notation: $\chi(Y) \coloneqq$ Euler characteristic of Y.

Examples: $\chi(\bullet) = 1$, $\chi(\mathbb{S}^1) = 0$, $\chi(\mathbb{S}^2) = 2$, $\chi(\Sigma_g) = 2 - 2g$

 Σ_g for g = 1, 2, 3 (not linearizable by smooth embedding for g > 1 if there is an isolated equilibrium).

⁵Figures from Quanta Magazine and Wikipedia.

Thank you for your time and attention.

References for (non)existence of 1-1 linearizing y = h(x)

- Linearization in the large of nonlinear systems and Koopman operator spectrum. Lan & Mezić. Phys D (2013)
- Existence and uniqueness of global Koopman eigenfunctions for stable fixed points and periodic orbits.
 Kvalheim & Revzen. Phys D (2021)
- Linearizability of flows by embeddings. Kvalheim and Ararthoon. arXiv:2305.18288 (2023)
- Koopman embedding and super-linearization counterexamples with isolated equilibria. Arathoon and Kvalheim. arXiv:2306.15126 (2023)
- Properties of immersions for systems with multiple limit sets with implications to learning Koopman embeddings. Liu, Ozay, & Sontag. Automatica (2025)
- Global linearization without hyperbolicity. Kvalheim and Sontag. arXiv:2502.07708 (2025)
- Differential topology of the spaces of asymptotically stable vector fields and Lyapunov functions. Kvalheim. arXiv:2503.10828 (2025)

Linearizability of dynamical systems by embeddings

Positive results (sufficient conditions)

Negative results (necessary conditions)

A counterexample for multiple isolated equilibria