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Dimensionality reduction of data

The “manifold hypothesis” postulates that a data set in Rn lies on
some k-dimensional submanifold K ⊂ Rn.

=⇒ data can be parametrized locally by k < n real numbers.

Classical approaches like PCA to learn these parameters work well
when K is linear, but not when K is nonlinear.



Autoencoding as a nonlinear dimensionality reduction
approach (and why it should not work)

Popular nonlinear approach: seek autoencoder G ◦ F , where the
output of the encoder F : Rn → Rk is the desired k parameters,
G : Rk → Rn is the decoder, and F , G are continuous.

Often F , G are artificial neural network functions.

Ideal autoencoder: G(F (x)) = x for all x ∈ K .

These do not usually exist! Existence =⇒ K is homeomorphic
to a subset of Rk , which is not true of most k-dimensional K .



If autoencoding should not work, how does it?2 Example:

K = a pair of circles in R3, after thickening then deleting small
intervals, is diffeomorphic to a pair of disjoint intervals in R.

Encoder F : R3 → R = any extension of this diffeomorphism.
Decoder G : R→ R3 = any extension of inverse diffeomorphism.

Such small intervals disjoint from the data set always exist.
2MDK and E D Sontag. Why should autoencoders work? Transactions on

Machine Learning Research (2024).



If autoencoding should not work, how does it? In general:

←→

(figure courtesy of P. Arathoon)

K = a union of ≤ k-dimensional compact submanifolds of Rn,
after thickening then deleting the codimension > 0 “steepest
ascent disks” of a polar Morse function, is diffeomorphic to a
subset of Rk .

Encoder F : Rn → Rk = any extension of this diffeomorphism.
Decoder G : Rk → Rn = any extension of inverse diffeomorphism.

Can always find such a “codim > 0 set” disjoint from the data.



Note: training sometimes yields disconnected “good” sets

In practice, random initialization/training leads to random
outcomes, even those with disconnected “good sets”, despite the
fact that arbitrarily large connected “good sets” (disks) exist.



Semi-global autoencoders always exist3

Let F ℓ,m be dense in the space of continuous functions Rℓ → Rm,
e.g., the collection of possible neural network outputs.

Theorem 1 (MDK and E D Sontag). Let K ⊂ Rn be finitely
many disjoint compact ≤ k-dimensional submanifolds with(out)
boundary, and let µ, ∂µ be any smooth measures on K , ∂K . For
each δ > 0 and finite set S ⊂ K , there is a closed set K0 ⊂ K s.t.
▶ K0 ∩ S = ∅, µ(K0) < δ, ∂µ(K0 ∩ ∂K ) < δ;
▶ M \ K0 is connected for each component M of K ;
▶ For each ε > 0 there are functions F ∈ Fn,k , G ∈ Fk,n s.t.

sup
x∈K\K0

∥G(F (x))− x∥ < ε.

=⇒ data S can be reconstructed to order ε, and generalization
error will also be uniformly smaller than ε with probability 1− δ.

3MDK and E D Sontag. Why should autoencoders work? Transactions on
Machine Learning Research (2024).



Almost-global autoencoders do not generally exist
Theorem 2 (MDK and EDS). Let K ⊂ Rn be a k-dimensional
compact submanifold without boundary. For any continuous
functions F : Rn → Rk and G : Rk → Rn,

max
x∈K
∥G(F (x))− x∥ ≥ rK︸︷︷︸

reach

> 0.

Figure: The reach rK > 0 of K is the largest number such that any
x ∈ Rn satisfying dist(x , K ) < rK has a unique nearest point on K . Both
line segments shown have length rK .



Almost-global autoencoders do not generally exist4

Theorem 2 (MDK and EDS). Let K ⊂ Rn be a k-dimensional
compact submanifold without boundary. For any continuous
functions F : Rn → Rk and G : Rk → Rn,

max
x∈K
∥G(F (x))− x∥ ≥ rK︸︷︷︸

reach

> 0. (2)

Proof:
▶ N := {x ∈ Rn : dist(x , K ) < rK} contains line segment from

x ∈ N to nearest ρ(x) ∈ K ; ρ is continuous.
▶ If (2) does not hold, t 7→ ρ ◦ (tG ◦ F |K + (1− t) idK ) is a

homotopy of idK to ρ ◦ G ◦ F |K , so deg2(ρ ◦ G ◦ F |K ) = 1.
▶ But this contradicts

0 = deg2(ρ ◦ G ◦ F |K ) = deg2(ρ ◦ G |F (K)) deg2(F |K )︸ ︷︷ ︸
0

.

4MDK and E D Sontag. Why should autoencoders work? Transactions on
Machine Learning Research (2024).



Example: K = 2 unit circles; max error > reach rK = 1

Figure: Errors ∥G(F (x))− x∥ on the two circles. The x -axis shows the
index k representing the k-th evenly-spaced point on the respective circle.



In fact, true min-max error is usually bigger than the reach5

Red reach = 1 but green reach = ε≪ 1, so previous min max error
“reach” is conservative. But green “dewrinkled reach” = 1− ε.

Corollary (MDK and EDS). Let K ⊂ Rn be a k-dimensional
compact submanifold without boundary. For any continuous
functions F : Rn → Rk and G : Rk → Rn,

sup
x∈K
∥G(F (x))−x∥ ≥ r∗

K ,k︸︷︷︸
dewrinkled reach

:= sup
L∈Mn,k ,T∈C(L→K)

{rL−δ(T )}.

5MDK and E D Sontag. Why should autoencoders work? Transactions on
Machine Learning Research (2024).



Implications for autoencoder training error6

Theorem 1 =⇒ F , G always exist making the Lp(µ) loss∫
K
∥G(F (x))− x∥pdµ(x) < ε(

= lim
N→∞

1
N

N∑
i=1
∥G(F (xi))− xi∥p

)

arbitrarily small for any p ∈ (0,∞) (G can be modified off of
F (K \K0) to make the AE error smaller than some CK > 0 on K0.)

However, Theorem 2 =⇒ for many K , the L∞ loss

max ∥G(F (x))− x∥ ≥ rK > 0

is uniformly big, independent of F , G .

6We thank Dr. Joshua Batson for suggesting these observations.



Summary
Main representation result: data lying in a submanifold K of
dimension k can be encoded through a bottleneck layer of the
same dimension k, up to an arbitrarily small reconstruction error ε.

Moreover, the generalization error will also be uniformly smaller
than ε with arbitrarily high probability 1− δ.

Main necessity result: for many K (including all K without
boundary), there is a geometric lower bound on the global
reconstruction error.

Training implications: Lp error can always be made arbitrarily
small for p ∈ (0,∞); L∞ error cannot.
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“Applied Koopmanism”

“A central focus of modern Koopman analysis is to find a finite set
of nonlinear measurement functions, or coordinate transformations,
in which the dynamics appear linear.”

— Brunton, Budišić, Kaiser, and Kutz. “Modern Koopman Theory
for Dynamical Systems.” SIAM Review, 64.2 (2022)

They seek nonlinear measurements that separate points, to be able
to invert / not to lose information. Also want measurements /
inverse to be continuous for practical reasons.

More formally, they seek embeddings of nonlinear dynamical
systems into linear ones as invariant subsets, so that existing
theoretical and algorithmic linear tools can be utilized.

https://epubs.siam.org/doi/doi/10.1137/21M1401243
https://epubs.siam.org/doi/doi/10.1137/21M1401243


Linearizing embeddings

Let f be a locally Lipschitz vector field on a manifold M. Consider

ẋ = d
dt x = f (x),

assume this ODE’s solutions x(t) = Φt(x0) are defined for all time.

F : M → Rn is a topological embedding if F is a one-to-one
continuous map with a continuous inverse F −1 : F (M)→ M, and
is a smooth embedding if additionally F , F −1 are smooth.

Such an embedding F is linearizing if F ◦ Φt = eBt ◦ F for some
n × n matrix B. In the smooth case, y = F (x) satisfies ẏ = By .

Fundamental question: when is (M, Φ) linearizable in this sense?



When is a dynamical system (M, Φ) globally linearizable?

▶ Not when M is connected, forward Φ-trajectories are
precompact, and Φ has a countable number ≥ 2 of omega
limit sets (Liu, Ozay, Sontag 2023).

▶ Not when M is connected and Φ has a non-global compact
attractor A ̸= ∅, since its open basin of attraction would also
be closed (by the Jordan normal form theorem), hence empty.

Thus, we study linearizability of the restriction (S, Φ) of Φ to
1. compact invariant sets S, and
2. basins S of compact attractors A.

For these 2 cases we obtain necessary and sufficient conditions
for global linearizability of (S, Φ) by an embedding, for the 2
cases of topological and smooth embeddings (4 cases total).7

7MDK and P. Arathoon, Linearizability of flows by embeddings (2023).



Torus preliminaries

The n-torus T = T n is (Lie group) isomorphic to (R/Z)n, vectors
with n real entries but with addition defined elementwise modulo 1.

A torus action on S is a map Θ: T × S → S satisfying
Θτ1+τ2(s) = Θτ1 ◦Θτ2(s) for all s ∈ S and τ1, τ2 ∈ T .

The flow (S, Φ) is a 1-parameter subgroup of a torus action if
Φt = Θωt mod 1 for some torus action Θ on S, ω ∈ Rn.



The linearizability theorem, case 1: compact, smooth
Observation: If (S, Φ) is linearizable with S compact, the Jordan
normal form theorem implies (S, Φ) embeds into the flow on Cn of
a diagonal imaginary matrix, so (S, Φ) is a 1-parameter subgroup
of restriction of standard torus action of T n on Cn to a subtorus.

This gives one implication below; the Mostow-Palais equivariant
embedding theorem gives the other.

Theorem (MDK and P. Arathoon). If S is a compact embedded
submanifold, (S, Φ) is linearizable by a smooth embedding ⇐⇒
(S, Φ) is a 1-parameter subgroup of a smooth torus action.

We use this theorem to construct examples of smoothly linearizable
(S, Φ) having isolated equilibria with e.g. S = a sphere, torus,
Klein bottle. On the other hand, regarding nonlinearizability...



Topological implications for case 1 (compact, smooth)
If (S, Φ) is a 1-parameter subgroup of a smooth torus action,
Bochner’s linearization theorem yields an n × n skew matrix Be
and a system of local coordinates on a neighborhood of each
equilibrium e ∈ S such that Φt ≈ eBet . Hence if e is isolated then
Be is invertible, n = dim S is even, and the Hopf index of e is +1.

Corollary (MDK and PA). If S is an odd-dimensional connected
compact submanifold with at least one isolated equilibrium, then
(S, Φ) cannot be linearized by a smooth embedding.

Corollary (MDK and PA).8 If S is a compact submanifold
containing at most finitely many equilibria such that (S, Φ) is
linearizable by a smooth embedding, χ(S)︸ ︷︷ ︸

Euler char.

= #{equilibria} ≥ 0.

8Apply the Poincaré-Hopf theorem.



A primer on the Euler characteristic9

Goes back to Francesco Maurolico (1537), Leonhard Euler (1758).

Notation: χ(Y ) := Euler characteristic of Y .

Examples: χ(•) = 1, χ(S1) = 0, χ(S2) = 2, χ(Σg) = 2− 2g

Σg for g = 1, 2, 3 (not linearizable for g > 1 if finite equilibria).
9Figures from Quanta Magazine and Wikipedia.



The linearizability theorem, case 2: compact, continuous

The theorem for case 2 is similar for case 1, but an additional
assumption is needed to rule out a pathology not possible in case 1.

Theorem (MDK and PA). If S is compact, (S, Φ) is linearizable
by a topological embedding ⇐⇒ (S, Φ) is a 1-parameter subgroup
of a continuous torus action with finitely many orbit types.

A torus action has finitely many orbit types if there are only
finitely many subgroups H ⊂ T such that
H = {τ ∈ T : Θτ (s) = s} is the fixed point set of some s ∈ S.



Examples that are linearizable by topological embeddings

Figure: These flows are 1-parameter subgroups of torus (circle) actions,
so are linearizable by topological embeddings by the preceding theorem.



The linearizability theorem, case 3: basin, continuous
If S is the basin of an asymptotically stable compact set A ⊂ S, A
has continuous (smooth) asymptotic phase10 if there is a
continuous (smooth) asymptotic phase map P : S → A, i.e.,

P|A = idA, P ◦ Φt |S = Φt ◦ P for all t ∈ R.

Theorem (MDK and PA). (S, Φ) is linearizable by a topological
embedding ⇐⇒ A has continuous asymptotic phase and (A, Φ) is
a 1-parameter subgroup of a continuous torus action with finitely
many orbit types.

Example. The basin of an asymptotically stable limit cycle is
linearizable by a topological embedding ⇐⇒ the cycle has
continuous asymptotic phase. This is not always the case, but it is
the case if Φ ∈ C1 and the cycle is hyperbolic.

10This notion has roots in oscillator theory and more generally NHIM theory.



The linearizability theorem, case 4: basin, smooth
Theorem (MDK and PA). (S, Φ) is linearizable by a smooth
embedding ⇐⇒ A is an embedded submanifold with smooth
asymptotic phase, (A, Φ) is a 1-parameter subgroup of a smooth
torus action, and for some open U ⊃ A, (U, Φ) embeds in a
reducible linear flow covering Φ on some vector bundle over A.

When does the final condition hold? Classical linearization
theorems and recent linearizing semiconjugacy theorems (MDK
and Revzen, 2023) give answers in the special cases that A is an
equilibrium or periodic orbit, and some things are known if A is
quasiperiodic, but the general case seems to be an open problem.

A necessary condition for A to satisfy all conditions of the
theorem is that A be a (eventually relatively ∞-)normally
hyperbolic invariant manifold. See Eldering, MDK, Revzen
(2018) for related results on asymptotic phase and linearizability.
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Two fundamental problems of control theory

Consider
dx
dt = f (x , u), (1)

where M ∋ x is a smooth manifold and f is smooth.
1. Controllability problem: Given a, b ∈ M, find u(t) s.t.

x(T ) = b if x(0) = a for some T > 0.

a⇝b

2. Stabilizability problem: Given a compact subset A ⊂ M,
find smooth u(x) s.t. A is asymptotically stable11 for the
closed-loop vector field F (x) = f (x , u(x)). Link

11For every open W ⊃ A there is an open V ⊃ A s.t. all forward
F -trajectories initialized in V are contained in W and converge to A.

https://www.youtube.com/watch?v=FeCwtvrD76I&ab_channel=RobotLocomotionGroup


The stabilization conjecture and Brockett’s solution

Often A = {x∗} is a point, M = Rn in the stabilization problem.

Stabilization conjecture (pre-1983): a reasonably strong form of
controllability implies smooth stabilizability of a point.

Example: the “Heisenberg system” or “nonholonomic integrator”

ẋ = u
ẏ = v
ż = yu − xv

 = f (x, u).

is controllable in every sense imaginable. But Brockett (1983)
showed that no point is stabilizable, refuting the conjecture. How?

Theorem (Brockett). If a point is stabilizable, then image(f ) is a
neighborhood of 0. (In the example, (0, 0, ε) ̸∈ image(f ).)



Other stabilizability work

▶ Exponential (Gupta, Jafari, Kipka, Mordukhovich 2018;
Christopherson, Mordukhovich, Jafari 2022),

▶ global (Byrnes 2008, Baryshnikov 2023),
▶ time-varying (Coron 1992), and
▶ discontinuous (Clarke, Ledyaev, Sontag, Subbotin 1997)

variants of the stabilization problem are not considered here.



Coron’s and Mansouri’s obstructions
Krasnosel’skĭı and Zabrĕıko (1984) obtained a necessary condition
for asymptotic stability of an equilibrium of a vector field.

Using this, Coron introduced a homological obstruction sharper
than Brockett’s, and Mansouri generalized. Define

Σ := {(x , u) ∈ Rn × Rm : f (x , u) ̸= 0}.

Theorem (Coron 1990). If n > 1 and a point is stabilizable,

f∗(Hn−1(Σ)) = Hn−1(Rn \ {0}) (∼= Z).

Theorem (Mansouri 2010). If a closed codimension > 1
submanifold A ⊂ Rn with Euler characteristic χ(A) is stabilizable,

f∗(Hn−1(Σ)) ⊃ χ(A) · Hn−1(Rn \ {0}) (∼= χ(A) · Z).



Limitations of these results

The results of Brockett, Coron, Mansouri rely on parallelizability of
Rn to view vector fields and control systems as Rn-valued.

Furthermore, they apply only to the special case that A is a point
or a closed submanifold of Rn with χ(A) ̸= 0.

But sometimes one wants to stabilize more general subsets of more
general spaces: robot gaits, safe behaviors for self-driving cars, etc.

How to test for stabilizability in such general settings?12

▶ Generalization of Brockett’s test (MDK and Daniel E.
Koditschek, J Geometric Mechanics, 2022).

▶ Generalization of Coron’s and Mansouri’s tests (MDK,
SIAM J Control and Optimization, 2023).

12An exposition of all stabilizability results here is in 2023 book Topological
Obstructions to Stability and Stabilization by W. Jongeneel and E. Moulay.

https://link.springer.com/book/10.1007/978-3-031-30133-9
https://link.springer.com/book/10.1007/978-3-031-30133-9


A primer on the Euler characteristic13

Goes back to Francesco Maurolico (1537), Leonhard Euler (1758).

Notation: χ(Y ) := Euler characteristic of Y .

Examples: χ(•) = 1, χ(S1) = 0, χ(S2) = 2, χ(figure 8) = −1

Theorem (Poincaré, Hopf): if N is a compact smooth manifold
with boundary ∂N, then χ(N) = 0 ⇐⇒ there exists a
nowhere-zero smooth vector field on N pointing inward at ∂N.

13Figures from Quanta Magazine.



Generalization of Brockett’s test
Theorem (MDK & Koditschek 2022): Let A ⊂ M be compact
& stabilizable. Then χ(A) is well-defined. If χ(A) ̸= 0, then for any
sufficiently small vector field X , X (x0) = f (x0, u0) for some x0, u0.

Proof: Assume ∃ stabilizing u(x) and define F (x) := f (x , u(x)).
Lyapunov function theory =⇒ ∃ compact smooth domain N ⊃ A
s.t. F points inward at ∂N and χ(A) = χ(N) ̸= 0. Continuity
=⇒ F − X points inward at ∂N if X is small =⇒ F − X has a
zero by Poincaré-Hopf =⇒ ∃x0 s.t. X (x0) = F (x0) = f (x0, u(x0)).



Examples
Heisenberg system

ẋ = u
ẏ = v
ż = yu − xv

(2)

Kinematic differential drive robot

ẋ = u cos θ

ẏ = u sin θ

θ̇ = v
(3)

The right side of (2) ̸= Xε := (0, 0, ε) for any ε > 0.

The right side of (3) ̸= Xε := (ε sin θ,−ε cos θ, 0) for any ε > 0.

Thus, our result =⇒ A is not stabilizable if χ(A) ̸= 0. E.g., if A is
a stabilizable compact submanifold, A is a union of circles and tori.

Other applications: any stabilizable compact set has zero Euler
characteristic for satellite orientation with ≤ 2 thrusters, for
nonholonomic dynamics with ≥ 1 global constraint 1-form,...



Safety application
Our Brockett generalization implies an obstruction to a control
system operating safely, i.e., ensuring trajectories initialized on the
boundary of some “bad” set immediately enter some “good” set.

E.g., impossible for this differential drive robot to aim within ±179
degrees of the origin while “strictly” avoiding obstacles via u(x).



Homotopy theorem & generalized Coron, Mansouri tests
Homotopy theorem (MDK 2023). Let X , Y be smooth vector
fields on a manifold M with a compact set A ⊂ M asymptotically
stable for both. There is an open set U ⊃ A such that X |U\A,
Y |U\A are homotopic through nowhere-zero vector fields.

=⇒ Theorem (MDK 2023). Let the compact set A ⊂ M be
asymptotically stable for some smooth vector field Y on M. If A is
stabilizable for ẋ = f (x , u), then for all small enough open U ⊃ A,

H•(T (U \ A) \ 0) ⊃ f∗H•(Σ) ⊃ Y∗H•(U \ A)︸ ︷︷ ︸
cf. Coron, Mansouri

.

These are stronger than all preceding results: there is an example
(MDK 2023) for which non-stabilizability is detected by each of
these theorems but not by any of the preceding theorems.



Möbius strip example



Proof of the homotopy theorem



Can these results detect stabilizability of periodic orbits?

If A is the image of a periodic orbit with the same orientation for
X and Y , the straight-line homotopy over a sufficiently small open
U ⊃ A satisfies the homotopy theorem’s conclusion regardless of
whether A is attracting, repelling, or neither for X or Y .

=⇒ homotopy theorem gives no information on stability or
stabilization of periodic orbits. Since this is the strongest result,
preceding results also give no information.

...Could it be that periodic orbits might be “easy” to stabilize?



Periodic orbits are sometimes easier to stabilize

Indeed, at least sometimes:

Theorem (Anthony M. Bloch & MDK, in preparation).
For a broad class of control systems including Heisenberg’s and the
differential-drive robot, any periodic orbit that can be created
can be stabilized—even though no equilibrium that can be
created can be stabilized for the mentioned examples!
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Thank you for your attention.
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